Distinct expressions of contrast gain control in parallel synaptic pathways converging on a retinal ganglion cell.

نویسندگان

  • Deborah Langrill Beaudoin
  • Michael B Manookin
  • Jonathan B Demb
چکیده

Visual neurons adapt to increases in stimulus contrast by reducing their response sensitivity and decreasing their integration time, a collective process known as 'contrast gain control.' In retinal ganglion cells, gain control arises at two stages: an intrinsic mechanism related to spike generation, and a synaptic mechanism in retinal pathways. Here, we tested whether gain control is expressed similarly by three synaptic pathways that converge on an OFF alpha/Y-type ganglion cell: excitatory inputs driven by OFF cone bipolar cells; inhibitory inputs driven by ON cone bipolar cells; and inhibitory inputs driven by rod bipolar cells. We made whole-cell recordings of membrane current in guinea pig ganglion cells in vitro. At high contrast, OFF bipolar cell-mediated excitatory input reduced gain and shortened integration time. Inhibitory input was measured by clamping voltage near 0 mV or by recording in the presence of ionotropic glutamate receptor (iGluR) antagonists to isolate the following circuit: cone --> ON cone bipolar cell --> AII amacrine cell --> OFF ganglion cell. At high contrast, this input reduced gain with no effect on integration time. Mean luminance was reduced 1000-fold to recruit the rod bipolar pathway: rod --> rod bipolar cell --> AII cell --> OFF ganglion cell. The spiking response, measured with loose-patch recording, adapted despite essentially no gain control in synaptic currents. Thus, cone bipolar-driven pathways adapt differently, with kinetic effects confined to the excitatory OFF pathway. The ON bipolar-mediated inhibition reduced gain at high contrast by a mechanism that did not require an iGluR. Under rod bipolar-driven conditions, ganglion cell firing showed gain control that was explained primarily by an intrinsic property.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Development of Cell Type-Specific Connectivity Patterns of Converging Excitatory Axons in the Retina

To integrate information from different presynaptic cell types, dendrites receive distinct patterns of synapses from converging axons. How different afferents in vivo establish specific connectivity patterns with the same dendrite is poorly understood. Here, we examine the synaptic development of three glutamatergic bipolar cell types converging onto a common postsynaptic retinal ganglion cell....

متن کامل

Connexin 36 and rod bipolar cell independent rod pathways drive retinal ganglion cells and optokinetic reflexes

Rod pathways are a parallel set of synaptic connections which enable night vision by relaying and processing rod photoreceptor light responses. We use dim light stimuli to isolate rod pathway contributions to downstream light responses then characterize these contributions in knockout mice lacking rod transducin-α (Trα), or certain pathway components associated with subsets of rod pathways. The...

متن کامل

A simple retinal mechanism contributes to perceptual interactions between rod- and cone-mediated responses in primates

Visual perception across a broad range of light levels is shaped by interactions between rod- and cone-mediated signals. Because responses of retinal ganglion cells, the output cells of the retina, depend on signals from both rod and cone photoreceptors, interactions occurring in retinal circuits provide an opportunity to link the mechanistic operation of parallel pathways and perception. Here ...

متن کامل

The Synaptic and Circuit Mechanisms Underlying a Change in Spatial Encoding in the Retina

Components of neural circuits are often repurposed so that the same biological hardware can be used for distinct computations. This flexibility in circuit operation is required to account for the changes in sensory computations that accompany changes in input signals. Yet we know little about how such changes in circuit operation are implemented. Here we show that a single retinal ganglion cell...

متن کامل

Functional circuitry of visual adaptation in the retina.

The visual system continually adjusts its sensitivity, or 'adapts', to the conditions of the immediate environment. Adaptation increases responses when input signals are weak, to improve the signal-to-noise ratio, and decreases responses when input signals are strong, to prevent response saturation. Retinal ganglion cells adapt primarily to two properties of light input: the mean intensity and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of physiology

دوره 586 22  شماره 

صفحات  -

تاریخ انتشار 2008